Simplify the expression √96/8

A.4√3

___

√2

B.√2

___

4

C. 2√3

D. 1

___

2√3

2. What is the value of j in the equation √j + √j + 14 = 3√j +10 ?

A. 2

B. 4

C. 16

D. √2

### 5 Answers

1. is that sqrt(96/8) or sqrt(96)/8 ?

sqrt(96/8) = sqrt(12) = sqrt(4*3) = sqrt(4)*sqrt(3) = 2*sqrt(3) {so your multiple choice answer of C is the answer.}

sqrt(96)/8 = sqrt(16*6)/8 = [sqrt(16)*sqrt(6)]/8 = [4*sqrt(6)]/8 = sqrt(6)/2

2. sqrt(j) + sqrt(j) + 14 = 3*sqrt(j) + 10

We can add/subract/multiply/divide by the same amount to both sides of an equals equation and still maintain the equality. We want to solve for the unknown variable, in this case j, by isolating it all by itself on one side of the equation and multiplied only by 1.

sqrt(j) + sqrt(j) + 14 = 3*sqrt(j) + 10

2*sqrt(j) + 14 = 3*sqrt(j) + 10

2*sqrt(j) + 14 – 10 = 3*sqrt(j) + 10 – 10

2*sqrt(j) + 4 = 3*sqrt(j)

2*sqrt(j) + 4 – 2*sqrt(j) = 3*sqrt(j) – 2*sqrt(j)

4 = sqrt(j)

multiply the equation by itself:

4^2 = [sqrt(j)]^2

4*4 = sqrt(j)*sqrt(j)

16 = j

answer is C

(to double-check, plug in 16 for j into the original equation:

sqrt(j) + sqrt(j) + 14 = 3*sqrt(j) + 10

sqrt(16) + sqrt(16) + 14 ?= 3*sqrt(16) + 10

4 + 4 + 14 ?= 3*4 + 10

8 + 14 ?= 12 + 10

22 = 22

yea! our answer works! )

1. C sqrt(96/8) = sqrt(12) = sqrt(4*3) = sqrt4 * sqrt3 = 2*sqrt3

2. C simplify to 2sqrt(j) + 14 = 3sqrt(j) +10

…then 4 = sqrt(j)

…then square each side to get 16 = j

√(96/8) = √12 = √4√3 = 2√3

So, the answer is C

Cheers!

do your own homework!!! Stop looking for a fast way out.